This topic describes the Performance Analytics tool and illustrates some basic uses of it.
Introduction
The performance tool operates with two central concepts: statistics and statistic slices.
Statistics
Each axis has some important information embedded in it.
- The name of the axis provides a short description of what the axis collects and is used when creating a statistic slice
- A value type, which tells you what kind of data will be collected for this axis. The different value types are integer, boolean, string, and histogram. The first three are straightforward, but statistic axes with a histogram type can collect a distribution of all the values encountered during each collection interval. This means that instead of seeing an average NFS operation latency every collection interval, you can see a full distribution of operation latencies during that interval. This allows you to see outliers as well as the average, and observe the effects of caching on the performance of your system more easily.
- A constraint type, which is only relevant while creating a statistic slice, and will be described in more detail below
One last bit of information that an axis provides makes the most sense after seeing how datapoints are queried. In the most basic situation, you would only collect one axis of a statistic, such as the latency axis from the NFS operations statistic. When you ask for data, you would get back a datapoint for every collection interval in the time range you requested. These datapoints would be grouped into a single stream.
However, if you had collected the operation type axis as well as the latency axis, you would get two streams of datapoints: one for read operations, and one for write operations.
Because the operation axis applies to many datapoints, the datapoints returned are split into two streams, and the operation axis is stored with the top-level stream instead of with each datapoint in the streams. However, the latency axis will be different for each datapoint in a stream, so it is not an attribute of the stream, but instead an attribute of the datapoint.
Statistic Slices
When you specify a slice, there are several fields which you must supply:
- The statistic type this slice is associated with. This must be the same type as the statistic of which this is an instantiation.
- The collection interval, which must be greater than the minimum collection interval the parent statistic gives
- The axes of the parent statistic this slice will collect
Finally, a slice can place constraints on axes of its parent statistic, allowing you to limit the data you get back. For instance, if you're trying to narrow down the cause of some high NFS latency outliers, it may be useful to filter out any NFS latencies which are shorter than one second. To do this, you would place a constraint on the latency axis of an NFS operation slice that states that the values must be higher than one second. You can constrain any axis in the same fashion, and each axis' description in the parent statistic gives a constraint type which can be applied to it. This allows you to place different types of constraints on the latency axis (which is a number measured in nanoseconds) than the operation type axis (which is an enum that can take the values "read" or "write").
Persisting Analytics Data
Related Links
- The Performance Analytics Tool API Reference provides a detailed list of all statistics which can be collected, what their axes represent, and how those axes can be constrained, and outlines all management operations which are available.
- Working with Performance Analytics Graphs in the Graphical User Interface